Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78.408
Filtrar
1.
J Mater Chem B ; 12(16): 3908-3916, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38567452

RESUMEN

The fabrication of shape-selective coinage metal nanoclusters (MNCs) has promising applications due to their exceptional physical and chemical molecule-like properties. However, the stability of the specific geometry of the nanoclusters, such as their cubic shapes, is unclear and has been unraveled by assessing the nanoclusters' interactions with different environments. In this work, we investigate the morphological stability of cubic structured, coinage metal nanoclusters of varying sizes ranging from 14 to 1099 atoms. The impact of solvent environments like water and the presence of ionic liquids (IL) on the stabilization of the MNCs were assessed using molecular dynamics (MD) simulations. In general, smaller MNCs composed of less than 256 atoms encountered structural distortion easily compared to the larger ones, which preserved their cubic morphology with minimal surface aberrations in water. However, in the presence of 4M 1-butyl-1,1,1-trimethyl ammonium methane sulfonate [N1114][C1SO3] IL solution, the overall cubic shape of the MNCs was successfully preserved. Strikingly, it is observed that in contrast to the noble MNCs like Au and Ag, the cubic morphology for Cu MNCs with sizes less than 256 atoms exhibited significant stability even in the absence of IL.


Asunto(s)
Cobre , Nanopartículas del Metal , Simulación de Dinámica Molecular , Cobre/química , Nanopartículas del Metal/química , Líquidos Iónicos/química , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
2.
Food Chem ; 448: 139210, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569408

RESUMEN

The detection of heavy metals in tea infusions is important because of the potential health risks associated with their consumption. Existing highly sensitive detection methods pose challenges because they are complicated and time-consuming. In this study, we developed an innovative and simple method using Ag nanoparticles-modified resin (AgNPs-MR) for pre-enrichment prior to laser-induced breakdown spectroscopy for the simultaneous analysis of Cr (III), Cu (II), and Pb (II) in tea infusions. Signal enhancement using AgNPs-MR resulted in amplification with limits of detection of 0.22 µg L-1 for Cr (III), 0.33 µg L-1 for Cu (II), and 1.25 µg L-1 for Pb (II). Quantitative analyses of these ions in infusions of black tea from various brands yielded recoveries ranging from 83.3% to 114.5%. This method is effective as a direct and highly sensitive technique for precisely quantifying trace concentrations of heavy metals in tea infusions.


Asunto(s)
Cromo , Cobre , Contaminación de Alimentos , Plomo , Nanopartículas del Metal , Plata , , Té/química , Cromo/análisis , Plomo/análisis , Plata/química , Nanopartículas del Metal/química , Cobre/análisis , Contaminación de Alimentos/análisis , Análisis Espectral/métodos , Rayos Láser , Camellia sinensis/química , Metales Pesados/análisis , Límite de Detección
3.
Sci Total Environ ; 927: 172145, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569974

RESUMEN

Copper (Cu) has sparked widespread global concern as one of the most hazardous metals to aquatic animals. Ocean acidification (OA) and warming (OW) are expected to alter copper's bioavailability based on pH and temperature-sensitive effects; research on their effects on copper on marine organisms is still in its infancy. Therefore, under representative concentration pathways (RCP) 2.6, 4.5, and 8.5, we used the multiple linear regression-water quality criteria (MLR-WQC) method to assess the effects of OA and OW on the ecological risk posed by copper in the Ocean of East China (OEC), which includes the Bohai Sea, Yellow Sea, and East China Sea. The results showed that there was a positive correlation between temperature and copper toxicity, while there was a negative correlation between pH and copper toxicity. The short-term water quality criteria (WQC) values were 1.53, 1.41, 1.30 and 1.13 µg·L-1, while the long-term WQC values were 0.58, 0.48, 0.40 and 0.29 µg·L-1 for 2020, 2099-RCP2.6, 2099-RCP4.5 and 2099-RCP8.5, respectively. Cu in the OEC poses a moderate ecological risk. Under the current copper exposure situation, strict intervention (RCP2.6) only increases the ecological risk of copper exposure by 20 %, and no intervention (RCP8.5) will increase the ecological risk of copper exposure by nearly double. The results indicate that intervention on carbon emissions can slow down the rate at which OA and OW worsen the damage copper poses to marine creatures. This study can provide valuable information for a comprehensive understanding of the combined impacts of climate change and copper on marine organisms.


Asunto(s)
Organismos Acuáticos , Cobre , Monitoreo del Ambiente , Océanos y Mares , Agua de Mar , Contaminantes Químicos del Agua , Cobre/toxicidad , Agua de Mar/química , Organismos Acuáticos/efectos de los fármacos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Concentración de Iones de Hidrógeno , China , Cambio Climático , Calentamiento Global , Animales , Acidificación de los Océanos
4.
Med Sci Monit ; 30: e943738, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38664941

RESUMEN

BACKGROUND The pathological mechanism of osteoarthritis is still unclear. The regulation of the immune microenvironment has been of growing interest in the progression and treatment of osteoarthritis. Macrophages with different phenotypes, producing different cytokines, have been linked to the mechanism of cartilage injury in osteoarthritis. Copper ions play a role in the immune response and are involved in the pathological mechanisms of osteoarthritis by affecting the metabolism of the cartilage matrix. Bioactive glass (BG) is an osteogenic material with superior biocompatibility. Here, we report on the regulatory behavior of macrophages using a copper-based composite BG material. MATERIAL AND METHODS Cu-BGC powder was prepared by sol-gel method, and scaffolds were fabricated and characterized using 3D printing. Macrophage cultures grown with Cu-BGC were examined for cell culture and proliferation. The effect of Cu-BGC on the degradation metabolism of chondrocytes, cultured in the environment of inflammatory cytokine IL-1ß, was determined. In addition, the morphology of macrophages, secretion of inflammatory cytokines, and expression of surface markers were examined. RESULTS The results show that Cu-BGC promotes macrophage proliferation at a range of concentrations and increases the secretion of anti-inflammatory cytokines while inhibiting proinflammatory cytokines. At the same time, M2-type cell surface markers are definitely expressed and the morphology of macrophages is altered. In addition, Cu-BGC inhibited the degradation metabolism of chondrocytes in the inflammatory environment induced by IL-1ß. CONCLUSIONS These results suggest that Cu-BGC induced macrophage polarization into an M2 type anti-inflammatory phenotype, and inhibition of immune injury response may play a role in delaying cartilage matrix damage in osteoarthritis.


Asunto(s)
Proliferación Celular , Condrocitos , Cobre , Citocinas , Macrófagos , Osteoartritis , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Osteoartritis/patología , Osteoartritis/metabolismo , Animales , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/patología , Cobre/metabolismo , Cobre/farmacología , Citocinas/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , Cartílago Articular/patología , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Cartílago/metabolismo , Cartílago/efectos de los fármacos , Cartílago/patología , Células RAW 264.7 , Vidrio , Andamios del Tejido
5.
Discov Med ; 36(183): 646-654, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665014

RESUMEN

Wilson's disease (WD) is an inherited disorder of copper metabolism in which pathological copper accumulation, mainly in the liver and the brain, leads to hepatic and/or neuropsychiatric signs and symptoms. Chelators and zinc salts can successfully induce negative copper balance in many patients; however, neurological deterioration may still be observed. This phenomenon can be divided into: (1) early 'paradoxical' neurological deterioration, which usually develops in the first 6 months of anti-copper treatment and may be commonly related to drug type, or (2) late neurological deterioration, which mostly occurs after 6 months of treatment and is often related either to non-compliance with treatment, overtreatment resulting in copper deficiency, or adverse drug reactions. Another explanation, especially for early neurological deterioration, is natural WD progression, which can be difficult to differentiate from drug-related deterioration, but usually leads to a worse outcome. There is still no consensus on how to define neurological deterioration in WD using scales or biomarkers, how to distinguish it from the natural disease progression, its risk factors, and optimal management. This narrative review, based on the current literature, aims to provide definitions, prevalence, pathological mechanisms and factors related to neurological deterioration, and also proposes schemes for diagnosis and treatment.


Asunto(s)
Cobre , Progresión de la Enfermedad , Degeneración Hepatolenticular , Degeneración Hepatolenticular/terapia , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/metabolismo , Humanos , Cobre/metabolismo , Quelantes/uso terapéutico , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/terapia , Manejo de la Enfermedad
6.
Sci Rep ; 14(1): 9027, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641640

RESUMEN

Copper-doped ZnO nanoparticles with the formula Zn1-x(Cu)O, where x = 0.0, 0.03, 0.05, and 0.07 were produced using the co-precipitation process. Physical, chemical, and structural properties were properly examined. Powdered X-ray diffraction (P-XRD) patterns revealed the formation of hexagonal wurtzite crystal structure in all samples, through atomic substitutional incorporation in the Cu-doped ZnO lattice. The presence of Cu ions and their dissolution in the host ZnO crystal structure was supported by FT-IR spectra. HR-TEM images were used to assess the average size, morphology, and shape regularity of the synthesized samples. The form and homogeneity of the ZnO changed when Cu ions were substituted, as evidenced by FE-SEM/EDX analysis. The presence of copper signals in the Cu-doped samples indicates that the doping was successful. The decrease in zeta potential with an increased copper doping percentage designates that the nanoparticles (NPs) are more stable, which could be attributed to an increase in the ionic strength of the aqueous solution. The synthesized NPs were evaluated for their substantial in vitro antioxidant properties. In addition, the antimicrobial efficacy of the materials was tested against pathogenic microorganisms. Regarding the anti-diabetic activity, the 7Cu ZnO sample showed the highest inhibitory effect on the α-amylase enzyme. No variations were observed in the activities of the acetylcholinesterase enzyme (AChE) and proteinase enzymes with ZnO and samples doped with different concentrations of Cu. Therefore, further studies are recommended to reveal the in-vitro anti-diabetic activity of the studied doped samples. Finally, molecular docking provided valuable insights into the potential binding interactions of Cu-doped ZnO with α-amylase, FabH of E. coli, and Penicillin-binding proteins of S. aureus. These outcomes suggest that the prepared materials may have an inhibitory effect on enzymes and hold promise in the battle against microbial infections and diabetes.


Asunto(s)
Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Cobre/química , Escherichia coli , Staphylococcus aureus , Acetilcolinesterasa , Iones/farmacología , alfa-Amilasas
7.
BMC Gastroenterol ; 24(1): 142, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654165

RESUMEN

OBJECTIVES: Cuproptosis represents an innovative type of cell death, distinct from apoptosis, driven by copper dependency, yet the involvement of copper apoptosis-associated long non-coding RNAs (CRLncRNAs) in hepatocellular carcinoma (HCC) remains unclear. This study is dedicated to unveiling the role and significance of these copper apoptosis-related lncRNAs within the context of HCC, focusing on their impact on both the development of the disease and its prognosis. METHODS: We conducted an analysis of gene transcriptomic and clinical data for HCC cases by sourcing information from The Cancer Genome Atlas database. By incorporating cuproptosis-related genes, we established prognostic features associated with cuproptosis-related lncRNAs. Furthermore, we elucidated the mechanism of cuproptosis-related lncRNAs in the prognosis and treatment of HCC through comprehensive approaches, including Lasso and Cox regression analyses, survival analyses of samples, as well as examinations of tumor mutation burden and immune function. RESULTS: We developed a prognostic model featuring six cuproptosis-related lncRNAs: AC026412.3, AC125437.1, AL353572.4, MKLN1-AS, TMCC1-AS1, and SLC6A1-AS1. This model demonstrated exceptional prognostic accuracy in both training and validation cohorts for patients with tumors, showing significantly longer survival times for those categorized in the low-risk group compared to the high-risk group. Additionally, our analyses, including tumor mutation burden, immune function, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and drug sensitivity, further elucidated the potential mechanisms through which cuproptosis-associated lncRNAs may influence disease outcome. CONCLUSIONS: The model developed using cuproptosis-related long non-coding RNAs (lncRNAs) demonstrates promising predictive capabilities for both the prognosis and immunotherapy outcomes of tumor patients. This could play a crucial role in patient management and the optimization of immunotherapeutic strategies, offering valuable insights for future research.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Pronóstico , Cobre , Apoptosis/genética , Masculino , Biomarcadores de Tumor/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Transcriptoma , Análisis de Supervivencia
8.
Front Cell Infect Microbiol ; 14: 1301351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655284

RESUMEN

Bacterial infections emerge as a significant contributor to mortality and morbidity worldwide. Emerging extended-spectrum ß-lactamase (ESBL) Escherichia coli strains provide a greater risk of bacteremia and mortality, are increasingly resistant to antibiotics, and are a major producer of ESBLs. E. coli bacteremia-linked mastitis is one of the most common bacterial diseases in animals, which can affect the quality of the milk and damage organ functions. There is an elevated menace of treatment failure and recurrence of E. coli bacteremia necessitating the adoption of rigorous alternative treatment approaches. In this study, Se-Boil-CuO multimetallic nanoparticles (MMNPs) were synthesized as an alternate treatment from Talaromyces haitouensis extract, and their efficiency in treating ESBL E. coli was confirmed using standard antimicrobial assays. Scanning electron microscopy, UV-visible spectroscopy, and dynamic light scattering were used to validate and characterize the mycosynthesized Se-BiO-CuO MMNPs. UV-visible spectra of Se-BiO-CuO MMNPs showed absorption peak bands at 570, 376, and 290 nm, respectively. The average diameters of the amorphous-shaped Se-BiO-CuO MMNPs synthesized by T. haitouensis extract were approximately 66-80 nm, respectively. Se-BiO-CuO MMNPs (100 µg/mL) showed a maximal inhibition zone of 18.33 ± 0.57 mm against E. coli. Se-BiO-CuO MMNPs also exhibited a deleterious impact on E. coli killing kinetics, biofilm formation, swimming motility, efflux of cellular components, and membrane integrity. The hemolysis assay also confirms the biocompatibility of Se-BiO-CuO MMNPs at the minimum inhibitory concentration (MIC) range. Our findings suggest that Se-BiO-CuO MMNPs may serve as a potential substitute for ESBL E. coli bacteremia.


Asunto(s)
Antibacterianos , Cobre , Escherichia coli , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Escherichia coli/efectos de los fármacos , beta-Lactamasas/metabolismo , Animales , Cobre/química , Cobre/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Nanopartículas/química
9.
Nature ; 628(8009): 765-770, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658685

RESUMEN

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.


Asunto(s)
Cobre , Electrodos , Cobre/química , Energía Solar , Cristalización
10.
J Nanobiotechnology ; 22(1): 205, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658965

RESUMEN

The elevated level of hydrogen sulfide (H2S) in colon cancer hinders complete cure with a single therapy. However, excessive H2S also offers a treatment target. A multifunctional cascade bioreactor based on the H2S-responsive mesoporous Cu2Cl(OH)3-loaded hypoxic prodrug tirapazamine (TPZ), in which the outer layer was coated with hyaluronic acid (HA) to form TPZ@Cu2Cl(OH)3-HA (TCuH) nanoparticles (NPs), demonstrated a synergistic antitumor effect through combining the H2S-driven cuproptosis and mild photothermal therapy. The HA coating endowed the NPs with targeting delivery to enhance drug accumulation in the tumor tissue. The presence of both the high level of H2S and the near-infrared II (NIR II) irradiation achieved the in situ generation of photothermic agent copper sulfide (Cu9S8) from the TCuH, followed with the release of TPZ. The depletion of H2S stimulated consumption of oxygen, resulting in hypoxic state and mitochondrial reprogramming. The hypoxic state activated prodrug TPZ to activated TPZ (TPZ-ed) for chemotherapy in turn. Furthermore, the exacerbated hypoxia inhibited the synthesis of adenosine triphosphate, decreasing expression of heat shock proteins and subsequently improving the photothermal therapy. The enriched Cu2+ induced not only cuproptosis by promoting lipoacylated dihydrolipoamide S-acetyltransferase (DLAT) heteromerization but also performed chemodynamic therapy though catalyzing H2O2 to produce highly toxic hydroxyl radicals ·OH. Therefore, the nanoparticles TCuH offer a versatile platform to exert copper-related synergistic antitumor therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Sulfuro de Hidrógeno , Mitocondrias , Nanopartículas , Terapia Fototérmica , Profármacos , Tirapazamina , Terapia Fototérmica/métodos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Animales , Cobre/química , Cobre/farmacología , Ratones , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Profármacos/farmacología , Profármacos/química , Tirapazamina/farmacología , Tirapazamina/química , Nanopartículas/química , Ácido Hialurónico/química , Línea Celular Tumoral , Neoplasias del Colon/terapia , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Desnudos
11.
Biosensors (Basel) ; 14(4)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38667171

RESUMEN

Transition metal doping is an ideal strategy to construct multifunctional and efficient nanozymes for biosensing. In this work, a metal-doped CoMnOx nanozyme was designed and synthesized by hydrothermal reaction and high-temperature calcination. Based on its oxidase activity, an "on-off-on" smartphone sensing platform was established to detect ziram and Cu2+. The obtained flower-shaped CoMnOx could exhibit oxidase-, catalase-, and laccase-like activities. The oxidase activity mechanism of CoMnOx was deeply explored. O2 molecules adsorbed on the surface of CoMnOx were activated to produce a large amount of O2·-, and then, O2·- could extract acidic hydrogen from TMB to produce blue oxTMB. Meanwhile, TMB was oxidized directly to the blue product oxTMB via the high redox ability of Co species. According to the excellent oxidase-like activity of CoMnOx, a versatile colorimetric detection platform for ziram and Cu2+ was successfully constructed. The linear detection ranges for ziram and Cu2+ were 5~280 µM and 80~360 µM, and the detection limits were 1.475 µM and 3.906 µM, respectively. In addition, a portable smartphone platform for ziram and Cu2+ sensing was established for instant analysis, showing great application promise in the detection of real samples including environmental soil and water.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Cobre , Teléfono Inteligente , Cobre/análisis , Límite de Detección , Lacasa , Nanoestructuras
12.
ACS Sens ; 9(4): 1906-1915, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38565844

RESUMEN

As a carcinogenic and highly neurotoxic hazardous gas, benzene vapor is particularly difficult to be distinguished in BTEX (benzene, toluene, ethylbenzene, xylene) atmosphere and be detected in low concentrations due to its chemical inertness. Herein, we develop a depth-related pore structure in Cu-TCPP-Cu to thermodynamically and kinetically enhance the adsorption of benzene vapor and realize the detection of ultralow-temperature benzene gas. We find that the in-plane π electronic nature and proper pore sizes in Cu-TCPP-Cu can selectively induce the adsorption and diffusion of BTEX. Interestingly, the theoretical calculations (including density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations) exhibit that benzene molecules are preferred to adsorb and array as a consecutive arrangement mode in the Cu-TCPP-Cu pore, while the TEX (toluene, ethylbenzene, xylene) dominate the jumping arrangement model. The differences in distribution behaviors can allow adsorption and diffusion of more benzene molecules within limited room. Furthermore, the optimal pore-depth range (60-65 nm) of Cu-TCPP-Cu allows more exposure of active sites and hinders the gas-blocking process. The optimized sensor exhibits ultrahigh sensitivity to benzene vapor (155 Hz/µg@1 ppm), fast response time (less than 10 s), extremely low limit of detection (65 ppb), and excellent selectivity (83%). Our research thus provides a fundamental understanding to design and optimize two-dimensional metal-organic framework (MOF)-based gas sensors.


Asunto(s)
Benceno , Cobre , Límite de Detección , Estructuras Metalorgánicas , Termodinámica , Benceno/análisis , Benceno/química , Cobre/química , Estructuras Metalorgánicas/química , Adsorción , Cinética , Teoría Funcional de la Densidad , Gases/análisis , Gases/química
13.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642191

RESUMEN

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Asunto(s)
Cobre , Metales Pesados , Cobre/metabolismo , Silicio/farmacología , Silicio/metabolismo , Metales Pesados/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Suplementos Dietéticos
14.
Mol Biol Rep ; 51(1): 519, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625424

RESUMEN

BACKGROUND: Bacterial panicle blight, incited by Burkholderia glumae, has impacted rice production globally. Despite its significance, knowledge about the disease and the virulence pattern of the causal agent is very limited. Bacterial panicle blight is a major challenge in the rice-growing belts of North-western India, resulting in yield reduction. However, the management of B. glumae has become a challenge due to the lack of proper management strategies. METHODOLOGY AND RESULTS: Twenty-one BG strains have been characterized using the 16S rRNA and the gyrB gene-based sequence approach in the present study. The gyrB gene-based phylogenetic analysis resulted in geographic region-specific clustering of the BG isolates. The virulence screening of twenty-one BG strains by inoculating the pathogenic bacterial suspension of 1 × 10-8 cfu/ml at the booting stage (55 DAT) revealed the variation in the disease severity and the grain yield of rice plants. The most virulent BG1 strain resulted in the highest disease incidence (82.11%) and lowest grain yield (11.12 g/plant), and the least virulent BG10 strain resulted in lowest disease incidence of 18.94% and highest grain yield (24.62 g/plant). In vitro evaluation of various biocontrol agents and nano copper at different concentrations by agar well diffusion method revealed that nano copper at 1000 mg/L inhibited the colony growth of B. glumae. Under net house conditions, nano copper at 1000 mg/L reduced the disease severity to 21.23% and increased the grain yield by 20.91% (31.76 g per plant) compared to the positive control (COC 0.25% + streptomycin 200 ppm). Remarkably, pre-inoculation with nano copper at 1000 mg/L followed by challenge inoculation with B. glumae enhanced the activity of enzymatic antioxidants viz., Phenyl ammonia-lyase (PAL), Polyphenol oxidase (PPO) and Peroxidase (POX) and non-enzymatic antioxidant phenol. Additionally, we observed a substantial transcript level upregulation of six defense-related genes to several folds viz., OsPR2, OsPR5, OsWRKY71, OsPAL1, OsAPX1, and OsPPO1 in comparison to the pathogen control and healthy control. CONCLUSIONS: Overall, our study provides valuable insights into the potential and practical application of nano copper for the mitigation of bacterial panicle blight, offering promising prospects for commercial utilization in disease management.


Asunto(s)
Burkholderia , Oryza , Oryza/genética , Filogenia , ARN Ribosómico 16S/genética , Burkholderia/genética , Antioxidantes , Cobre , Grano Comestible
15.
ACS Appl Mater Interfaces ; 16(15): 18534-18550, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574189

RESUMEN

The metastasis and recurrence of cancer are related to immunosuppression and hypoxia in the tumor microenvironment. Activating immune activity and improving the hypoxic environment face essential challenges. This paper reports on a multifunctional nanomaterial, HSCCMBC, that induces immunogenic cell death through powerful photodynamic therapy/chemodynamic therapy synergistic antitumor effects. The tumor microenvironment changed from the immunosuppressive type to immune type, activated the immune activity of the system, decomposed hydrogen peroxide to generate oxygen based on Fenton-like reaction, and effectively increased the level of intracellular O2 with the assistance of 3-bromopyruvate, a cell respiratory inhibitor. The structure and composition of HSCCMBC were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared spectroscopy, etc. Oxygen probe RDPP was used to investigate the oxygen level inside and outside the cell, and hydroxyl radical probe tetramethylbenzidine was used to investigate the Fenton-like reaction ability. The immunofluorescence method investigated the expression of various immune markers and hypoxia-inducing factors in vitro and in vivo after treatment. In vitro and in vivo experiments indicate that HSCCMBC is an excellent antitumor agent and is expected to be a candidate drug for antitumor immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Dióxido de Silicio/farmacología , Cobre/química , Carbono/farmacología , Muerte Celular Inmunogénica , Neoplasias/tratamiento farmacológico , Oxígeno/química , Hipoxia , Línea Celular Tumoral , Peróxido de Hidrógeno/química , Microambiente Tumoral , Nanopartículas/química
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124226, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38560950

RESUMEN

Organophosphorus pesticides play an important role as broad-spectrum inactivating herbicides in agriculture. Developing a method for rapid and efficient organophosphorus pesticides detection is still urgent due to the increasing concern on food safety. An organo-probe (ZDA), synthesized by purine hydrazone derivative and 2,2'-dipyridylamine derivative, was applied in sensitive recognition of Cu2+ with detection limit of 300 nM. Mechanism study via density functional theory (DFT) and job's plot experiment revealed that ZDA and Cu2+ ions form a 1:2 complex quenching the fluorescence emission. Moreover, this fluorescent complex ZDA-Cu2+ was applicable for detecting glyphosate and glufosinate ammonium following fluorescence enhancement mechanism, with detection limits of 11.26 nM and 11.5 nM, respectively. Meanwhile, ZDA-Cu2+ was effective and sensitive when it is used for pesticide detection, reaching the maximum value and stabilizing in 1 min. Finally, the ZDA-Cu2+ probe could also be tolerated in cell assay environment, implying potential bio-application.


Asunto(s)
Aminobutiratos , 60658 , Plaguicidas , Compuestos Organofosforados , Fluorescencia , Colorantes Fluorescentes , Purinas , Espectrometría de Fluorescencia , Cobre
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124175, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38565051

RESUMEN

Copper is an essential trace element in the human body, and its level is directly related to many diseases. While the source of copper in human body is mainly intake from food, then the detection of copper ions (Cu2+) in food becomes crucial. Here, we synthesized a novel probe (E)-3-hydroxy-2-styryl-4H-benzo[h]chromen-4-one (NSHF) and explored the binding ability of NSHF for Cu2+ using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), high-resolution mass spectrometry (HRMS), Job's plot method and density functional theory (DFT). NSHF shows the advantages of fast response time, good selectivity and high sensitivity for Cu2+. The fluorescence intensity ratio (F/F0) of NSHF shows a good linear relationship with the concentration of Cu2+ and the detection limit is 0.061 µM. NSHF was successfully applied to the detection of Cu2+ in real samples. In addition, a simple and convenient Cu2+ detection platform was constructed by combining NSHF with a smartphone and a UV lamp, which can realize the rapid detection of Cu2+. This work provides an effective tool for the real-time detection of Cu2+.


Asunto(s)
Cobre , Colorantes Fluorescentes , Humanos , Cobre/análisis , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Iones/análisis , Alimentos
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124202, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38565052

RESUMEN

A groundbreaking optical sensing membrane has been engineered for the accurate assessment of copper ions. The pliable poly(vinyl chloride) membrane is formulated through the integration of sodium tetraphenylborate (Na-TPB), 4-(2-hydroxy-4-nitro azobenzene)-2-methyl-quinoline (HNAMQ), and tri-n-octyl phosphine oxide (TOPO), in conjunction with o-nitrophenyl octyl ether (o-NPOE). The sensor membrane undergoes a thorough investigation of its composition to optimize performance, revealing that HNAMQ serves a dual role as both an ionophore and a chromoionophore. Simultaneously, TOPO contributes to enhancing the complexation of HNAMQ with copper ions. Demonstrating a linear range for Cu2+ ions spanning from 5.0 × 10-9 to 7.5 × 10-6 M, the proposed sensor membrane showcases detection and quantification limits of 1.5 × 10-9 and 5.0 × 10-9 M, respectively. Rigorous assessments of potential interferences from other cations and anions revealed no observable disruptions in the detection of Cu2+. With no discernible HNAMQ leaching, the membrane demonstrates rapid response times and excellent durability. The sensor exhibits remarkable selectivity for Cu2+ ions and can be regenerated through exposure to 0.05 M EDTA. Successful application of the sensor in determining the presence of Cu2+ in biological (blood, liver and meat), soil, food (coffee, black tea, sour cherry juice, black currant, and milk powder) and environmental water samples underscores its efficacy.


Asunto(s)
Colorimetría , Cobre , Cobre/análisis , Cationes , , Alimentos
19.
Bioorg Med Chem Lett ; 104: 129738, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593925

RESUMEN

Copper plays a crucial role in maintaining biological redox balance in living organisms, with elevated levels observed in cancer cells. Short interfering RNAs (siRNAs) are effective in gene silencing and find applications as both research tools and therapeutic agents. A method to regulate RNA interference using copper is especially advantageous for cancer-specific therapy. We present a chemical approach of selective siRNA activation triggered by intracellular copper ions. We designed and synthesized nucleotides containing copper-responsive moieties, which were incorporated into siRNAs. These copper-responsive siRNAs effectively silenced the target cyclin B1 mRNA in living cells. This pioneering study introduces a novel method for conditionally controlling gene silencing using biologically relevant metal ions in human cells, thereby expanding the repertoire of chemical knockdown tools.


Asunto(s)
Cobre , Humanos , ARN Interferente Pequeño/metabolismo , Interferencia de ARN , Iones , Expresión Génica
20.
Curr Microbiol ; 81(5): 136, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598029

RESUMEN

Copper resistance in phytopathogens is a major challenge to crop production globally and is known to be driven by excessive use of copper-based pesticides. However, recent studies have shown co-selection of multiple heavy metal and antibiotic resistance genes in bacteria exposed to heavy metal and xenobiotics, which may impact the epidemiology of plant, animal, and human diseases. In this study, multi-resistance to heavy metals and antibiotics were evaluated in local Xanthomonas campestris pv. campestris (Xcc) and co-isolated Xanthomonas melonis (Xmel) strains from infected crucifer plants in Trinidad. Resistance to cobalt, cadmium, zinc, copper, and arsenic (V) was observed in both Xanthomonas species up to 25 mM. Heavy metal resistance (HMR) genes were found on a small plasmid-derived locus with ~ 90% similarity to a Stenotrophomonas spp. chromosomal locus and a X. perforans pLH3.1 plasmid. The co-occurrence of mobile elements in these regions implies their organization on a composite transposon-like structure. HMR genes in Xcc strains showed the lowest similarity to references, and the cus and ars operons appear to be unique among Xanthomonads. Overall, the similarity of HMR genes to Stenotrophomonas sp. chromosomal genomes suggest their origin in this genus or a related organism and subsequent spread through lateral gene transfer events. Further resistome characterization revealed the presence of small multidrug resistance (SMR), multidrug resistance (MDR) efflux pumps, and bla (Xcc) genes for broad biocide resistance in both species. Concurrently, resistance to antibiotics (streptomycin, kanamycin, tetracycline, chloramphenicol, and ampicillin) up to 1000 µg/mL was confirmed.


Asunto(s)
Antibacterianos , Metales Pesados , Animales , Humanos , Antibacterianos/farmacología , Cobre , Metales Pesados/toxicidad , Ampicilina , Cloranfenicol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...